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ABSTRACT
Equations are given for calculating the effects of a slow and rigid rotation on the frequency of the
radial modes of oscillation of a relativistic star. The rotation is treated to second order in the angular
velocity, but no other approximations are made.

I. INTRODUCTION

Rotating, relativistic stars are today accepted as the underlying explanation of the
pulsar phenomenon. Rotating relativistic objects may also be at the hearts of quasars
(see, e.g., Morrison 1969) and some galactic X-ray sources (Margon ef al. 1971). For a
quantitative explanation of the observed phenomena it is not enough to be able to calcu-
late the equilibrium configurations of relativistic stars. One must also understand how
these stars pulsate.

Pulsations may help explain some of the observed periodic phenomena of pulsars such
as the subpulse structure discovered by Drake and Craft (1968). Pulsations may play
an important role in the evolution of a star to its final equilibrium form by the emission
of gravitational radiation from modes which do not have a high degree of symmetry.
Even when only the equilibrium configurations are of final interest, the study of their
pulsations must still be pursued to distinguish the stable configurations from the un-
stable ones.

The radial pulsations of nonrotating stars have been analyzed by Chandrasekhar
(1964), Bardeen (1965), Bardeen, Thorne, and Meltzer (1966), Meltzer and Thorne
(1966), Faulkner and Gribben (1968), Cohen, Lapidus, and Cameron (1969) among
others. Nonradial oscillations of nonrotating stars and their accompanying gravitational
radiation have been studied by Thorne and Campolattaro (1967), Price and Thorne
(1969), and Thorne (1969).

In this paper we begin a dynamical analysis of the quasi-radial modes of slowly and
rigidly rotating, relativistic stars. The equilibrium theory for these stars was given in
Papers I and II (Hartle 1967; Hartle and Thorne 1968). The quasi-radial modes are
those modes which would be radial if the star were not rotating. They are the crucial
modes for determining the stability of the rotating star and also the modes which store
energy for the longest time against dissipation by gravitational radiation.

* Alfred P. Sloan Research Fellow; supported in part by the National Science Foundation.
t Supported in part by the National Science Foundation {GP-28027, GP-27304].
1 NAS-NRC Senior Research Associate.

177

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972ApJ...176..177H

178 J. B. HARTLE, K. S. THORNE, AND S. M. CHITRE Vol. 176

If only the stability of these modes were at issue, a full dynamical pulsation analysis
would not be necessary. A much simpler static stability criterion has already been given
in Paper III of this series (Hartle and Thorne 1969) and has been applied to stellar mod-
els in Paper V (Munn and Hartle 1972). That analysis, however, involves only the
calculation of equilibrium configurations and does not determine the eigenfrequencies,
mode shapes, rate of radiation damping, or any other dynamical properties of a rotating
pulsating star.

A dynamical analysis of the quasi-radial pulsations of a slowly rotating relativistic
star is begun in this paper with a derivation of a prescription for calculating the rotation-
induced change in pulsation frequency. In later papers of this series we expect to derive
expressions for the rate of gravitational radiation from these modes and to apply our
results to particular stellar models.

While simple in principle, a dynamical pulsation analysis of a slowly rotating star is
algebraically complex. We therefore begin in § IT with a general and abstract discussion
of the principles of the method to be used. This is followed in § III by the definitions of
the many quantities needed to describe the pulsating star and its gravitational field.
An explicit expression for the change in frequency of a radial mode due to rotation is
obtained in terms of these definitions in § IV. Finally, in § V we recover the Newtonian
analysis (Chandrasekhar and Lebovitz 1968) of the pulsations of slowly rotating fluid
masses.

II. FREQUENCY OF A QUASI-RADIAL MODE

The small oscillations of a relativistic star are conveniently described by the displace-
ment {&(x, £) of a fluid element from its equilibrium position x. Here, { is a formal ex-
pansion parameter proportional to the amplitude of vibration.! Associated with the
oscillation there will be small changes in the pressure, density, and metric. The Eulerian
changes in these quantities will be denoted? by {é®, {88, and {dg, respectively. These
quantities may be found by solving Einstein’s equations accurate to first order in the
amplitude of oscillation:

(0E = ()[R — 3gR — 8xT] = 0. (2.1)

These equations will be linear differential equations for the unknown quantities &,
6®, 88, and 8¢g. One must supply, as input information for these equations, (i) the func-
tions &, @, and ¢ which describe the nonpulsating equilibrium configuration, (ii) the
equation of state

g = 8@, ' (2.2)
and (iii) the adiabatic index I' governing the pulsation
&+ @ /o0 :
r= — . 2.3
® 68 constant entropy ( )

Equation (2.1) describes small oscillations about equilibrium. Since time does not
occur explicitly in this equation (stationary unperturbed configuration!), and since the
equation is linear, one can find solutions which vary harmonically in time:

E(xy t) = f(x)e'.” ’ 5g(x, f) = 6g(x)e"", etc. (2'4)

! Thus, terms multiplying ¢ are linear in the displacement, terms multiplying {2 are quadratic, etc. We
set the value of { to 1 to permit dropping ¢ from any expression where it is not needed as ‘“bookkeeper.”

2 As far as possible we follow the notation of Paper I. Our conventions follow those of Landau and
Lifshitz (1962) with ¢ = G = 1 except that Greek indices range over space and time coordinates while
Latin indices run only over the space variables. Boldface letters denote vectors and tensors; e.g., the
displacement vector is § = £,dx* and the metric is ¢ = g, d2v* @ dx’.
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In general, these oscillating solutions will contain both incoming and outgoing gravita-
tional waves, as measured by the behavior of the metric at large distances from the star.
However, for certain discrete complex values of the angular frequency, ¢ = oz 4 0y,
there will be solutions with only outgoing gravitational waves (“physically acceptable
solutions”). If ¢ < 0, the solution is an unstable mode of oscillation. If o7 > 0, it is a
stable oscillation with a hali-life of 2/g; for damping of vibration energy by the forces
of gravitational radiation reaction.

For radial oscillations of a nonrotating star, no emission of gravitational waves is
possible. Thus either ¢2 > 0 and the oscillations are stable, or ¢2 < 0 and they are un-
stable. If the star is now given a small angular velocity £, the number of modes of oscilla-
tion will not change, but the frequency of each mode will:

o= o(Q). (2.5)

Our aim here is to calculate the frequency of the quasi-radial modes as a function of Q
for small angular velocities. In this way we will determine how the stability of a star
is affected by a slow rotation.

For slow rotations the change in the frequency can be studied by a perturbation
analysis. We expand all quantities and equations in powers of a formal expansion pa-
rameter e with value unity. Terms linear in e are proportional to the angular velocity of
rotation , terms quadratic in e are proportional to Q%, etc. For example, we write

£x) = E0®x) + @) + .. .,
g=004 e+ ..., (2.6)
69 = 60g 4 dWg 4 €26@g 4 . ...

Here, we have used the fact that a reversal of the direction of rotation cannot change the
shape of the mode or its frequency, but will change some components of the metric (for
example, those which describe the local rate of rotation of inertial frames). By expanding
the vibrational Einstein equations (2.1) in powers of ¢, one obtains sets of equations
which, together with boundary conditions, determine the functions and frequencies
£ §0g ¢ (determined by €¢ part of eq. [2.1]), 6Vg (determined by { part), and
£?§Pg, ¢ (determined by ¢ part).

The perturbation of a radial mode caused by rotation is axially symmetric. The radia-
tion field is therefore also axially symmetric. It follows that no angular momentum is
lost through gravitational radiation (see, e.g., Price and Thorne 1969 for a discussion
of this point). The star’s constant angular momentum determines uniquely the large-
distance behavior of those terms in the metric which are of odd order in ¢ (see box 19.1
of Misner, Thorne, and Wheeler 1972). Consequently, there can be no gravitational radi-
ation to order e.

The lowest-order metric coefficient which contains radiation is thus of order €2 The
rate of radiation is then proportional to €, since the rate is a bilinear functional of the
gravitational-wave fields. In this way we conclude that, calculated to order € there is
no gravitational damping and the square of the frequency remains real.

An expression for the change in frequency of pulsation to order € can be found by
considering the functional form of the vibrational Einstein equations (eq. [2.1]). The
equations can be decomposed as ’

{8OFE = (linear in order ¢) , (2.6a)
¢{8WE = (linear in order e) + (products of order e with order {),  (2.6b)
2 {6PE = (linear in order €20)

+ (products of order € with order { and of order e{ with order ¢) . (2.6¢c)
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The important point for the following is that all of the linear terms in the above equa-
tions have the same functional form. That is, for example, the terms in the equation
€¢60P E which involve quantities of order ¢’¢ have the same functional form in terms
of those quantities as the equation {8VE has in the quantities of order {. The first term
in each of equations (2.6) involves the same linear operation.

The equations which determine the change in squared frequency ¢® are those of
order €%¢, equation (2.6c). They are linear in the unknowns of that order: ¥®, g,
8@, etc. They involve driving terms, which are products of quantities of lesser order—
quantities which are known already, from previous studies of pulsating nonrotating stars,
of rotating nonpulsating stars, and from the equations of order ef. Some of equations
(2.6¢) can be used to eliminate all the unknowns of order €’ except €. The single equa-
tion for £? then takes the form

LE?) + (Y®N =D, (2.7)

where £ is a linear operator and N and D are driving terms involving sums of products
of quantities of lesser order than €.

As argued above, the linear operator £ will be the same as that which governs the
radial oscillations of a nonrotating star:

LED®)=0. B (2.8)

This equation has been studied by Chandrasekhar (1964). He finds that £ is Hermitian
in the sense that, for any two radial displacements & and n and an appropriate weight

function w,
S Pxwr-Ln)] = S dPxw[L()n] . (2.9

An expression for (¢2)® can then be obtained by multiplying equation (2.7) by §©,
integrating, and using equations (2.8) and (2.9):

fdaxwf“” D

2)(2) — )
() S BrwE® . N

(2.10)

Thus, it is not necessary to solve the equations of order €% in order to calculate how
the frequency of a radial mode is changed by rotation. One has only to find the form of
these equations, to determine thereby N and D, and to perform the quadrature over
quantities of lower order given in equation (2.10). We will make this procedure explicit
in the following sections.

The above analysis can be simplified by choosing a polar axis along the rotation axis
and expanding all quantities in spherical harmonics. For example,

OPD = [6@y D (r) + 6@, @ (r)Py(cosb) + .. .]. (2.11)

The expansions of &g, £ will involve the appropriate tensor and vector spherical har-
monics of various orders /. Each of the linear terms in equation (2.6) involves a linear
differential operator constructed from the spherically symmetric metric of the non-
rotating, nonpulsating star. This operator cannot, therefore, couple different /-values.
By contrast, the quadratic driving terms will couple different spherical harmonics ac-
cording to the familiar law for addition of angular momenta in quantum mechanics.
In the case of equation (2.6b) the input to the driving term of order { contains only
1 = 0 terms, since it describes the radial pulsation of a spherical star. The input of order e
contains only / = 1 terms—essentially because these terms give the angular velocity
of the local inertial frames (a vector quantity; see Paper I). Thus, in equation (2.6b) the
¢ terms (! = 0) and € terms (/ = 1) can combine quadratically only to form / =1
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driving terms. Conclusion: the quantities driven by those terms—the e part of 6(g
and ¥P—must be / = 1. In the same way, the ¢ quadratic driving terms of equation
(2.6¢) are either products of terms of orders { and €2, or of orders € and e. In the first
case we are combining / = O and ! = 0 or 2 (see Paper I), and in the second the combina-
tionis/ = 1 and ! = 1. Thus, the driving term in equation (2.6c) and hence the expan-
sion of §¥¢ can contain at most / = 0, 1, or 2.

Return now to equation (2.10) from which the change in squared frequency is calcu-
lated. Since £© is radial and a function of 7 only, only the I = 0 radial part of D or N
will remain following the angular integration. Denoting the radial part of £® by £ and
the I = 0 radial parts of N and D by N, and D, we have

()@ = (_0/1'2 E(")Dowr?dr) / (f E(O)Nowrzdf> . (2.12)

Notice that, to find the functions Dy and N, needed for calculating the change in fre-
quency, one need not write down all of the equations of order €*¢. Only the I = 0, €
equations need be examined.

III. METRIC, STRESS-ENERGY, AND RICCI TENSORS

An enormous number of parameters are required in our description of a pulsating,
rotating, relativistic star. In this section we shall introduce them and show how they
enter into the metric tensor, the stress-energy tensor, and the Ricci tensor. For a sum-
mary see tables 1 and 2. As argued in § II, only the ! = 0 parts of the metric are relevant
to a determination of the change in the frequency. For convenience and for future
reference, however, we give here the complete decomposition of all the relevant quan-
tities.

a) Coordinate System and Form of the Metric

We begin our detailed analysis by constructing a coordinate system in which the
metric takes on a particularly simple form. Our coordinate system will reduce, in the

TABLE 1

SpHERICAL HARMONICS USED IN THIS PAPER?

Type l, Parity Values
Scalar.......... 0, + Vo* =1
2, + Y20: = Py = %(3* cos? 0 - 1)
Vector. ....... 1, + Py =0, P,Y', = — sin’d
2, + \Il%:o = —3 cos 6 *sin 0, W,= 0*
Tensor......... 0, + %=1, D%, =sin?f, P% 9 =0
27 + @20:00 = .P.z = %(3 cos? § — 1) .
(first type) <I>§o oo = (s)m"’ 0P = %(3 cos?§ — 1) sin? 6
$2y*y, =
2, + W2 = 6 sin? 6 — 3
(second type) ¥%*,, = —3 sin? 0 cos? 0
‘1,20*040 =0

= These are the spherical harmonics of Regge and Wheeler (1957; see also Appendix A of Thorne and
Campolattaro 1967), except that they have been renormalized. The asterisk indicates renormalization:
Wap = [47 /(20 + 1)]V2WY%,5, etc. The superscript (0, 1, or 2) is the value of the harmonic index /; the
subscript 0 is the value of the projection index m; the subscripts 6 and ¢ are tensor indices. Included here
are all nonvanishing scalar, vector, and tensor harmonics of order ! = 0, 1, 2; m = 0; and parity » = +.
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TABLE 2

PARAMETERS DESCRIBING A ROTATING, PULSATING STAR

ORIGIN OF PARAMETER

Density, Pressure

LEVEL IN EXPANSION; Metric Fluid Motion (egs. [3.11],
FUNCTIONAL DEPENDENCE (eq. [3.77) (egs. [3.8], [3.9)) [3.12], [3.15])

Nonrotating:

O(1), functionof r......... v, A ee E P,«,T
Rotating, nonpulsating:

O(e), function of r.. .. ..... @ Q = const. ce

O(é®), function of »........ mo, Ma, V2, Ko, hy e po*, po*
Pulsating, nonrotating:

0(%), function of 7, ¢. ... ... 7, 1 U
Rotating, pulsating:

O(ef), function of 7, ¢. . .. .. h F

O(€%), function of 7, ¢... ... Hy, H,, K,, N,, Wo, We, V

2y Y2

Other parameters:

Spacetime coordinates........................ i1, 0,0 (eq. [3.7])
Expansion parameters........................ e (§ ID)
Pulsation angular frequency................... o9, ¢® (eq. [4.5])
Legendre polynomial (see alsotable1)........... Py =3(3cos?0 — 1)

case of no rotation, to that of Chandrasekhar (1964) for a radially pulsating star. In the
case of no pulsation it will reduce to that of Paper I for a slowly rotating star.

We introduce coordinates ¢, 7, 8, ¢ which satisfy two conditions: (i) at order €¢° they
become the familiar spherical polar coordinates for a nonrotating, equilibrium stellar
model:

dst = —edf2 + edrt + r2(d6? + sin20de?) to  O(Y0) ; (3.0)

and (ii) to all orders in € and {, ¢ is a cyclic azimuthal angle about the axis of symmetry.
The metric is then independent of ¢, and any transformation of the form

t"')fl(ty 7, 0) ’ f—ﬁf2(t, 7, 0) ’ 0_')f3(ty 7, 0) ’ ‘P_)§0+f4(ty 7, 0) (3'1)

will preserve this independence. The four arbitrary functions in this change of coordi-
nates can be used to put the four constraints

g = guw = goo = 0,  gop = goo sin’ 4
on the metric coefficients, thereby bringing the line element into the form
ds? = —S51d8 + Sudr® + Sidrdt + r2S4d? + sin? 6(de — Lidt — L.dr)?]. (3.2)

If an expansion of the metric in powers of the angular velocity is now made, the func-
tions .S; will contain only terms that are even in ¢, and L; only terms that are odd. This
follows from symmetry of the metric under the simultaneous reversal ¢ — — ¢, @ — — Q.

It was shown in Paper I that for a rotating, nonpulsating star the metric terms even
in e contain only spherical harmonics of order / = 0 and 2, and of parity = = +; while
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terms odd in e contain only order ! = 1 and parity = = +. In the case of radial pulsa-
tion but not rotation (Chandrasekhar 1964), all metric terms have / = 0 and = = 4.
When rotation and pulsation are both present [terms of O(1), O(%), O(e), O(¢?), O(e?),
O(€¥¢) present], the usual rules for coupling angular momentum outlined in § IT dictate
that terms of O(e{), like terms of O(e), have I = 1 and = = +; while terms of O(€),
like terms of O(e?), have l = 0 or 2 and # = <+, or possibly! = 1, # = +.

Combining the conclusions of the above two paragraphs, we conclude that the func-
tions S; are even in € [0(1), O(¢), O(e?), O(e¥¢)] and havel = 0, 1, or 2, # = +; while
the functions L; are odd in € [O(e), O(ef)] and havel = 1, 7 = +

The spherical harmonics that enter into S; and L; are not all scalar harmonics. Of the
metric components, g, g, and g, transform as scalars under rotations; g:4 and g4
(with 4 = 6, ¢) transform as vectors; and g4p (with 4 and B running over 0, ¢) trans-
form as a tensor. The relevant vector and tensor spherical harmonics have been intro-
duced by Regge and Wheeler (1957) (see also Appendix A of Thorne and Campolattaro
1967). They are all summarized for the cases of interest in table 1. Axial symmetry
dictates that all the harmonics for our problem have projection quantum number m = 0.

Since g, g:r, and g, are scalars under rotation, the corresponding functions Sy, S, and
S3 (eq. [3.2]) have terms independent of 6, and terms proportional to Ps(cos ). The co-
ordinate conditions Boo = 0 and gy, = goo 'sin? 8 guarantee that gap involves %45 and
$2," 45, but not ¥2%*4p—which in turn guarantees that S4 has terms independent of 6,
and terms proportional to Psy(cos 6). The conditions g = g0 = 0 guarantee that g4 and
g-4 involve ®1y*4 but not ¥2,* ,4—which in turn guarantees that L; and L, are independent
of 6. In summary:

Si(r’ b, t) = Sio(?’, t) + S,'z(f, t)P2(C05 0) + O(GA) ’ Li(f, 0, t) = Lil(t) 1’) + 0(63) .

The form (3.3) of the metric is still preserved by the transformations )
t—=t+alrt), ror+galt), eo—e+ g, (3.4)

These transformations can be used to enforce the further conditions
Spp=0, Sp=1, Lyn=0. (3.5)

The remaining terms in the metric (3.2) may now be expanded in powers of € and ¢.
The functions of order {° have already been defined in Papers I and II. Retaining those
definitions, we define the remaining metric components as follows:

g = —e(1 4 )1 + 2e(h + hoPs) + €¢(No + NoPy)] + €2 sin? 6(Q — @)?,
grr = N1 4 2e2eM(my + moPy) /v + 20 u/r — €2 (Ho + HiP»)]

g0 = goo/sin? 0 = r2[1 + 2€X(vy — hy) Py — X KoPo]

g = —XQPr, g = —ersin? 0@ — & + (1),

8o = 8ro = Gro = 8o = 0. (3.7

o~

The quantities 1, No, N3, Qs, /1, #, Ho, Hs, and K» introduced here are all functions of
r and ¢; while the quantities », N, ko, ks, @, Mo, ms, and vs, which are taken over from
Papers T and II, are functions "of 7 alone.

b) Fluid Motions

In a rotating but nonpulsating star the fluid moves in the ¢-direction with angular
velocity @ = do/dt = u?/u'. When the star is set pulsating quasi-radially, its fluid gets
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displaced from its rotating equilibrium state by a certain amount £ in the radial direc-
tion, and by smaller amounts (due to rotational flattening and Coriolis forces), £ and
£¢, in the tangential directions. The resultant four-velocity has the form

w=gwu, W=gu, w=(Q+)ut, gpun=—1. (3.8

Here £, £%, and £ are functions of 7, 6, and ¢, and X, denotes dX/d¢. Once again sym-
metry under the simultaneous reversal ¢ — — ¢, @ — —Q shows that £ and £° contain
only even terms in ¢, while £¢ contains only odd. Examination of the spherical harmonics
with parity = = -+ (table 1) reveals that £, being a scalar under rotations, must have
! = 0 and 2; while £ (with 4 = 6 and ¢), being a vector, can have ! = 1 and 2. More
particularly, introducing new functions U, V, F, Wy, and W of r and ¢, we can write

g = rfeltU + e 2(Wo + WePy)], & = V¥ = —3V cosfsind,
gr = FdPlye = —¢F . : (3.9)

Here we have used the two-sphere metric (yes = 1, ¥o, = 0, v, = sin? ) to raise the
indices on the vector spherical harmonics of table 1; and we have imposed the demand for
radial pulsation at order ¢.

By combining the displacements (3.9) with the metric (3.7), in the manner dictated
by equations (3.8), we obtain the following components for the fluid four-velocity:

ut = e2{1 — }tn — €[(ho + hPy) — 272 sin? 607
+ [3n(ho + mPz) — 3(No+ NoPy) — 77 sin?6(39? + i@ + F ()]} ,
w = {r2U,, + € {{—r2(ho + hoP2) + 3¢ sin? 0% U
+ 72 OR(W, , + Wi Py)} ,
W = —3e¥e?V, cos@sin b,
ue =ee%Q — efe’?[3nQ + F ;] . (3.10)

¢) Density and Pressure

Let & and @ be the total density of mass-energy and the pressure, as measured by an
observer comoving with the fluid. Adopting the notation of Papers I and II for the
density and pressure in a rotating, nonpulsating star, and letting 66 and é® be the
Eulerian changes due to pulsation, we have

@ =P+ &E+ P)(po' + p:"Ps) + 60,
& = E + é(E + P)2/vPl(po" + p2"P2) + 6@ . (3.11)

Here E = E(r) and P = P(r) are density and pressure in the nonrotating, nonpulsating
star; po* = po*(r) and ps* = po*(r) are dimensionless rotational corrections, and

¥ = [(E + P)/Pl(dP/dE)eq. state (3.12)

is the “adiabatic index” associated with the equation of state (see Papers I and II).

The Eulerian changes due to pulsation, 68 and é®, can be calculated by the following
procedure: (i) Calculate the fractional Lagrangian change in the number density of
baryons, A9/, by imposing baryon-number conservation, [Ju*],, < [JU(—g) /%], =
0. Note that this conservation law can be put in the more convenient form

AT _ _ ol(—g)u] + [(—g)utpl
N (—g)u! ’

(3.13)
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where & denotes the Eulerian change due to pulsation—i.e., the part proportional to the
pulsational expansion parameter, {. (ii) Next use the first law of thermodynamics for
adiabatic pulsations,

Ag = (8 + @)(AN/I) ;  A® = T'®(AN/N) , (3.14)

to calculate the Lagrangian changes in & and ®. Here
F = (fﬂ,/(P) (do)/dm)const. entropy (3.15)

is the adiabatic index for pulsations—not to be confused with the formally defined index
(3.12) for the equation of state. (iii) Finally, infer the Eulerian changes in ® and & from
the Lagrangian changes:

0 = A® — @87, 066 = A& — & ¢, ' (3.16)
The calculation yields the following expressions for 66 and ®:

08 = §'[(E + P)TNR - E’r‘ze””U]

+ &{E+ Pytn+ @+ P) (255 + 1) (0" + P

2 /
— [ = :_PP) (po” + Pz*P2)] rietU — E're(Wo + W2P2)§ ’

(3.17)
8¢ = {[TPYyr — P'r%e?U] + & {TPTr + T'(E + P)(po" + p2"P2)Tnr
— [(E 4+ P)(ps" + po*Po)l'r2e2U — P'r2e 2 (Wo + WaPy)} . (3.18)
Here Tnr is the value of AN/N for a pulsating but nonrotating star:
Tyr = —r 2 M eMI2U) — rlehy ; (3.19)
and T is the rotational correction to A9/ (i.e., terms of order ¢ in AN/N):
Tr = —r 2 MWy + Wo'Py) + 2r2¢*(mo + myPs)u

— r2e2[r 1M (my + maPs) + 2(va — hy) P2 + $r’¢@? sin® 6)'U

+ 6VP, + KyP; + $(Ho + HyPy) + r*e™ (30" + &jr + &F 1) sin’ 6.
(3.20)
A prime denotes a radial derivative: X’ = 9dX/dr.

d) Stress-Energy Tensor

The stress-energy tensor for our rotating, pulsating star is given by the usual perfect-

fluid expression
T8 = (& + ®)uuf + g*@ . (3.21)

Here g is the inverse of the covariant metric (eq. [3.7]); u* is given by equations (3.10);
and & and @ are given by equations (3.11), (3.17), and (3.18). We do not give the com-
ponents of T*# explicitly here, because they would occupy about three pages; and the
reader can calculate them fairly easily.
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e) Ricci Tensor

Not so easy to calculate is the Ricci tensor for the metric (3.7). We would never
contemplate calculating it by hand. However, it is a manageable task using the FormAc
capabilities of an IBM 360 computer. The computers at Caltech and the University of
California at Santa Barbara have given us the covariant components for the Ricci
tensor that are shown in table 3.

Notice that we have broken each component up into independent parts. Each part is
characterized by a particular order (e?¢%, ¢ < 2 and b < 1) in the perturbation expan-
sion, and by a particular spherical-harmonic angular dependence.

Iv. | = 0 AND ! = 1 EQUATIONS OF MOTION
a) Equations of O(1), O(e), O(€?), and O(§)

The Einstein field equations at O(1) govern the structure of the nonrotating, non-
pulsating star. After some manipulation they reduce to the familiar equations

er=1—2M/r, M= [4rPEdr, (4.1a)
0
dP _ _ (E+ P)(M + 477°P)
dr r(r — 2M) ’ (4.10)
dv _ 2(M + 4xr°P) (4.1c)

dr — r(r—2M)

We use these together with the equation of state, P = P(E), to construct our unper-
turbed stellar model (cf. § IIc of Paper II).

At O(e) and O(€?) the field equations become the familiar equations for the structure
of a slowly and rigidly rotating star, as derived and integrated in Papers I and II. These
equations determine the functions @, o, ms, vs, ko, ks, po’, and po* (cf. table 2).

At O(¢) the field equations reduce to the equations for a radially pulsating, nonrotat-
ing star, which were first derived by Chandrasekhar (1964). We summarize those equa-
tions here: :

The metric functions u and 5 are determined uniquely in terms of the displacement
function U by the “initial-value equations”

p = —4x(E + P)e?U, (4.2a)
W = — 8z TPU’ + r2(1 + in')(E + P)U]. (4.2b)

Equation (4.2b) is subject to the boundary condition
n = 0 outside the star . (4.2¢)

The displacement function U evolves in accordance with the Chandrasekhar equation
of motion

e?tW2y2(E + P)U ;= [e®VETPUY

’ /2
+ e(3v+)\)/2[._. _4%; — 8re P(Er;l_ P) + rz(EP+ P)]U , (4.2d)

which is subject to the boundary conditions (cf. Bardeen, Thorne, and Meltzer 1966,
eq. [7b])
Uxr® near r=0, TPU =0 at r=R (stellar surface) . (4.2¢)
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TABLE 3

NONVANISHING COVARIANT COMPONENTS OF THE RICCI TENSOR®

A. Terms of O(1) --- (Nonrotating Star)

) =ev-7\[_V_"_ L +mh_M] R R O ¥

tt 2 T 2 r
R A1
R99=——%= l-e - zTe (v' - ")
sin~ ©
B. Terms of O(¢), £ = 1 Part --- {Rotating, Nompulsating Star)
o em et o (A L B (2o L 2) g
1*—Q-w+2e r|w' - 5 4 7 1—2
€%0a
C. Terms of O(ez)‘t f = 0 Part --- (Rotating, Nonpulsating Star)

R ' ' vg v o |)
_tQE - ‘ho" + (v' - % + %)ho' + [v" + 2—:—— + Y 5 A ]ho
€

o

2 -
AR DR A AR AN dhal +§r2e'7\(n-ﬁ)a"-lr2e7‘ﬁ'2
2r 0 r or 2r 0 3 3

+ % [hre'x - r2 e-7\ (w—;?\')]m - &) & + —g— [1 - e-x-r eJ\ (v—'——;——)i)] (a - 5)2

R
o (A ) 7\(3 v_') v LM 2 v ar v 1 -v 2_.2
—5 ho +(2 v)ho+e 5+ )% *e -3 - 5 + 7 v T JPptze T W
€ r r 2r r
_EAB_ - |+(l+ ')m -7\h, lrh -v-A_,2
2,0% "% rrV )T rTe B ~FT ¢ w
€ Yoas
D. Terms of 0(52), { = 2 Part --- (Rotating, Nonpulsating Star)
R
e A h.-+(v._£+g)h.+[v..+avL+uv'-_w_s_J]h . vt - )
(-;2?2(!:099) 2 2 rj/ 2 r 2 r2 2 2 2

2
v v' ' v 3y ! _2.2 -\ - =, 1 2 N2
+e [-—21:m2 '(T- +———2r2+—2r)m2] 3T e (0-o) @ +3T e B

- % [hre'-)\ - r2 e-)\ (——v' ; )\l)] (0 -® @ - 3[1 e e_)\(ll—-é_ﬁ)](g - 3)2

3
R
S : S v &) . T
€2P(CO59)—h2"+(r-v BV AR W
2
A
' . ' ' 3% - 2
+e7\(_22_+%>m2. +e}\(5932_ v2+%+v21\)m2_%r2evm.
T T 2r r
R
TS S ML,
5% -~ V2 +(r-2)h2+e<2+2t =
e‘Z’OA 4
A
Ran =-h, - m +—1:!'t e-?\-vm..Z
55 % 2 r 2 6
€ Yo
RAB _ oA 2(h " " 2(v' - A " (h,' ' [ 7\' v '
5202* =e (b - vy") + [F () + b 2-v2)-rh2+l2-6e +r(v-)\)](h2-v2)
O AB

2 -y h_,2
' 2 ' = '
+m2+(+v)m2+5e r W

a'l'he Ricei tensor 1s the sum of parts A through H. A prime denotes derivative with respect to r; a dot
denotes derivative with respect to t. The indices A and B on R run over 6 and ¢.
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TABLE 3: RICCI TENSOR (CONTINUED)

Terms of O(t) --- (Pulsating, Nonrotating Star)

I3
2 A
v 1 v o, o3 v ‘ e ..
+e ez —p - |l =+ +5=]up -=1
| 2 r T 21:2 2r T
R 2A-v
rxr_ 1, A oYY Alf2 ¥ RS YA A\ .
£ -"3n "(T‘a“*e 7t er “'*(‘3' 2 3 + »
r r 2r
R R
ﬁ:—ﬁ;-e =-—re7\n' +p' +(—+ v')u
¢ t sin"®
R,
—tr=2r'2e)\p
S
Terms of O(e t), £ = 1 Part -—- (Rotating, Pulsating Star)

R 2 e Y A2
CQ;A* = e {- % " +[-2t + 12 (V—%)] _‘)1' - [1 -ty r(v 5 A )]J]‘} - e )\[—E—G' +%(Q - E)]ﬂ'
etdo 4 .

+['§m' +(ﬂ-3)] u' +[-r7§)"+(—%+%v’) E'+(-%+ v') (n-ﬁ)]p

RrA

T %
<P

N

. 2
-v Ve

i’ - wq-%e'w'?\a' n

N S
N & b

0 Part --- (Rotating, Pulsating Star)

1. 1 v , v , vy iy - A"
Irg e (e R)ny o omg o [ e 22 ](“o*“o)I

[_ 2o . (21 L2 12'_) (@ - E)]jl' ¥ [(_ 2 4 10 V—ZI)E' + (h + 20 - Bry' 4 1P -"—‘;)(n - G)]jl}

Terms of o(ezg), ]

2
vad | o v W Zy! V' 2 A , oyt v'(v‘ - 7\12
+ e [e [-——m'-(—+—+-—-m +h"+ r+v"_h0'+ v'+—t + 3 hoq

T 2r2 r/ 0 [

h +%e-v [- r(n - ww' +(a - 5)2”“.

2
Al2v! byt byt 20t (y' 4+ ') ] 2. (i 2v‘) v _ (2, 3! v'
e[———-r m°'+( +—r5+ 5 o, rho'- +——-ho ——+=5 +—)h

r 2 T T r2 r /O

+§e'v [- 2r(o SO+ (- T+ v) (@ - @' + rT.I’2 +<% + v’) () -G)z]lu +£2e2)‘m0';i
r

_rr 1 -vid e 1 v 1 v N v _2 v 2 —yyn
-z Ho'(?+ )"‘o"e“o"'(z"11‘)“0'se (- W)Yy

+§e'v {rem' + [- - (v' +—7\é:-)l(0 - TE)} jl' +-§ e""'r:2 @+ lhr - ra(v' +—>\§I—)IG'

+ [- 2412 v+ (2 + W) - re%] (a - G)}jl + {e7‘ [—él; my' + (- ;:jé +%';)mo| - ho'}n'

'
_%e'v r2$‘2q+e7‘l- ex(—%-»-‘—%)mo +%h°'l u'
T r

Af A Lo 8 2y - &' _ 2v'\ s 2 - e
+e{e [-(——5-+;§)m0'+(:ﬁ+ rs - r2 mol+ - S+ ho' w-ze hou

. - — 1 -y 2 ——y e 1 _-v+A — b oA .
%:-%H —gevrz(n-w)Jl'-gevr(n—u)w‘q-lgew r(n—w)ﬁ'*--;ge mo]u
€
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TABLE 3: RICCI TENSOR (CONTINUED)

H. Terms of 0(52(), £ = 2 Part --- (Rotating, Pulsating Star)
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The principal task of this paper is to make sense out of the equations of order e and
the I = 0 equations of order €¢*¢. This we do in the following sections. The algebraic
computations described there were all performed by computer. The authors, with much
help from Barbara Zimmerman, performed the computations on IBM 7094 computers,
and later checked them on IBM 360 computers at the University of California, Santa
Barbara, and at Caltech.

b) Equations of O(e)

Table 2 shows that there are two functions of » and ¢ that should be determined by
the equations of O(e{): the metric function 73, and the azimuthal displacement function
F, which is produced by Coriolis forces.

Take the €, ®%"4 part of the Einstein equation R4 = 87(T,a — 3g.47); multiply
it by 2r~%; integrate it over time; and use equation (4.2a) to eliminate u. The result is
the following differential equation for j;:

it = —3a'n + 8xr e Hi(E + P)(3a'r + 25)U . (4.32)

To guarantee that the metric (3.7) approaches the Minkowski form far from the star,
we impose the boundary condition j; = 0 at r = o —which, together with equations
(4.2c) and (4.3a), guarantees

71 = 0 outside the star . (4.3b)

(This condition is closely related to the absence of dipole gravitational waves; notice
that 7 is the only time-dependent metric function that appears in an ! = 1 part of the
metric.)

Take the e, ®%*4 part of the equation T4%, = 0 (where 4 = 6, ¢); multiply it by
r"*(E + P)™'¢”; integrate it with respect to time; and use equation (4.2a) to eliminate u.
The result is an equation for the Coriolis-induced azimuthal velocity factor F;:

I'P e el 2 :
— —0 — l- — _—— , = -, a2 -
F= —j— 3o ExP PR oU' + 72 [w + | w]U. (4.3¢c)

) Equations of O(é¥¢) withl = 0

Take the €¥¢, I = 0 part of the equation R, = 87 (T — $Tgs); multiply it by 7;
integrate it with respect to time; use equation (4.3a) to eliminate 7i’; and use equation
(4.2a) to eliminate u. The result is the following initial-value equation for the metric
function Hy(¢, ) in terms of the €%, ! = 0, radial fluid displacement W, and in terms
of functions characterizing the nonpulsating and/or nonrotating states:

Hy = 8xre"2(E + P)W,

12 E+ P\ .. ]
p (E+P)[4e"m7°+(1+ ;';, )po +%"‘r2w2]U. (4.42)

+ 8=

Take the €%, ! = 0 part of the equation
e_'+)‘[Rtt - ST(TH - %guT)] + Rrr bt 87I'(T"- -_ %g"T) )

use equations (4.2) to eliminate n’ and u, (4.3a) to eliminate 7,/, and (4.4a) to eliminate
H,; use the equations of structure for a rotating star (Paper II) to simplify terms involv-
ing derivatives of @, my, %, and po*; and use the equations of structure (4.1) for a non-
rotating star to simplify terms involving derivatives of » and . The result is the following
initial-value equation for N,: '
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Ny = — 872 TPW, — 4re™r2(E + P)[1 + e — 8xr3(T' — 1)P]W,
+ Z2e72(Q — @)a'n + iex‘”r[e"‘r&)’ + (1 — 3¢ 4 8x*P)(Q — ®)]41 .

2 12p?
3E+P°

— 7@—mI3ATP — E — P)i'* + (B + P)@ — )&’ + SHE + P)%

— 8#6}‘—”/27[ o+ 25— I‘Pmo + I‘(E + P)po ]

+ [&(6* — 5)(E + P) — 3TP + Stre?P(E + P)|a?

E+P+81r 2P(2 - FPP)]mo

E+P

82)\

+8 (E+P)[2+e"‘

+ 2 E+ P[ae + 1) (1+

+ 32wr? (P £ 1_ i

(4.4b)

Take the €2, I = 0 part of the equation T',*,, = 0; use equations (4.4a,b) to eliminate
Ho, and N/, (4.3a, ) to eliminate 7," and F,;, and (4.2a, b, d) to eliminate u, v/, and U”;
use the equations of structure for a rotating star (Paper II) to simplify terms involving
derivatives of @, mo, ko, and p,*; and use the equations of structure (4.1) for a nonrotating
star to simplify terms involving derivatives of » and . Finally, assume a sinusoidal time
dependence of the form

Ut 7) = Ulr) exp [i(s@ + esD)1] ;
Wo(t, r) = Wo(r) exp [i(s©@ + &D)1] . (4.5)

Then the term (E + P)r~2e**/2U 4 in the ¢, | = 0 part of T,*,, = 0 acquires a piece
of order €*¢. Transfer this piece into the €, ! = 0 part of T,%,,, where it rightfully be-
longs. The result is the following eigenequation for Wo(r):

TN 250MW Y — Ll MW} + D = 0. (4.62)
Here &£ is the Chandrasekhar operator (eq. [4.2d]):
L[ f] = e*TMN12y2(E + P)(c @)% + [e® V22T Pf'])

4pP! P(E + P) P ]
G| — H A .
+ e [ 5 8me 7 + AE T P) f (4.6b)
W is the “weighting function” which enters into £:
W(r) = e¢t3N12p—2(E 4 P) ; (4.6¢)

and D is the “driving term,” which is given in table 4.

d) Expression for the Change in Frequency

Equation (4.6a) has the same structure as equation (2.7). Following the general
argument of § IT, we can now construct an explicit expression for the rotation-induced
change in squared frequency of a radial mode. Take equation (4.6a), multiply it by
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TABLE L

THE DRIVING TERM § FOR EQUATION (4.6a)

Vol. 176

o(r) = U'[[mo i V2 g, ) +58,* T(E + B) 7 /2 [%‘3 - %](1 -y

. ‘
. §aa'e"'/2[r<z +P) 4 QéLf)—pl AR AR )

2_2 -1 v/ 1 A E+P 1 _TP - 1 - 1
5T T v/ rpl (3™ - 1) =% EEI:_P(I-5e7‘)+EP(1-e7\)(1-7)
2 1 P ~\_I'P
+ bx PP(I- +E+P)-re E+Fﬂ|

+ U|Imo 5 e57‘+v/2,1"(E + P)[- %(1 - e_7‘) + b 22 P(1 + 2e'7‘) + slmz rh P2]
+(E + P + TP) ’- 1-3e M. 18x r2 P(1 +ée'7‘) - slhte rh P2] s e I"Pll + 81 2 P]

2 2(E + ) [0?)]2 2 oAV +2h r2 (& + P) V2 (0042

+ po* €+ ee"*"/Ql[% - %"- (0912 12 v _ La-eMas 7e'7‘>] + bapt PO
-2np r2[(1 +eM(24T) + 8 £PR(1 4 r)l
- 2x(E + P) :2[(1 -eM e (s eM@-1) e8P P - ) +%)”

+ha ot e"'/2[E + P +%r‘1>]

+Ew? e7"'"/2Hn Pl-in e e PP r L@ DO - e
+%(E + P4+ TR)(1 + 76N -%r e e'7\|

+-3"3K>2 2 e7""/2’- (+p-r)[0(D12 2 eV 4 (B4 B) [%1— Mo g - i— ) +%r‘(e‘7‘ - 1)]

1

+ I‘Pl- }hl ey % +I]i ek] + h:\'ra(E + P) P(3 + e7‘)(§ T - 1) + be? FP2(1 +eM)

+ 161»:2 rh P2 e?‘l(l" - 1)(E + P) + I‘P] + T'P e"‘ll]

e"™M2U, and integrate over » from the star’s center to its surface. Integrate by parts so

that the equation becomes
R
S dr[26@e@ WU — NI, Q[ U] — ePMUD] = 0.
0 .

Then use £[U] = 0 to obtain the desired expression for (¢?)®:

R
S dre™N2U (r) D(r)
()@ = 200g@ = 2

f drw (r) U(r)

(4.7)

(4.8)

The “driving term” D(r) is given in table 4, and ‘W(r) is given in equation (4.6¢).
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V. NEWTONIAN LIMIT

In this section we take the Newtonian limit of our expression for the rotation-induced
change in frequency (eq. [4.8]) and recover the result of Chandrasekhar and Lebovitz
(1968). After reinserting factors of G and ¢, the Newtonian limit is defined by (cf. Paper
I, § VD)

E=GE/& + 0(1/¢%) , (5.1)

P =GP/t + 0(1/c%) , (5.2)
M=GM/+ 0(1/c¢Y), (5.3)

e =1 —f(zc;M/c2r2)dr + 0(1/cY) (5.4)
e =14 2GM/c*r + 0(1/¢%) , (5.5)
o=9/c+ 01/, (5.6)
Pt = po*/c + O(1/c*) , (5.7)

my = Gmo/ct + O(1/¢%) , (5.8)
U=U+0(1/¢&), (5.9)

¢ =a/c+ 01/ . (5.10)

Here, we have used the same symbols on both sides of the equation to simplify notation.
The quantities E, P, M, p,*, etc., on the left-hand side of the equations are the fully
relativistic quantities having as dimensions various powers of length, while the corre-
sponding quantities on the right-hand side are their finite Newtonian limits (¢ — «)
with conventional cgs dimensions involving mass, length, and time.

Inserting these limits into our pulsation equation, we find that the leading term is of
0O(1/¢*) and has the form

[F2]DEU = Ulo?pe*E*(1 — v 1)/P — 4GEmy/7®
+ 4GMp"EX(1 — v~V)/(PP) + 10EQ%/3]
+ TU'[GEmo/r* — GMp*E*(1 — v7V)/(r?P) — 2EQ*]. (5.11)
In our notation the expression (eq. [80]) of Chandrasekhar and Lebovitz (1968) is

[?]® f drl[EU?/7?] = ng dr{Ep"[TU" — 4r*(U*/7r%)']/7r*
—o?E(dE/dP) po" U2/r* + 202EU?/(3r)} . (5.12)

Integrate by parts the first and second terms on the right-hand side of the Chandrase-
khar-Lebovitz equation (5.12). Use the definition of v, the Newtonian equations for
rotationally perturbed stars (e.g., Paper I, § VII), and the Newtonian equation for radial
pulsations (e.g., Chandrasekhar and Lebovitz 1968) to eliminate all derivatives of po7,
E, P, and all second derivatives of U. The result is then identical to that obtained by
multiplying our equation (5.11) by U/r? and integrating from the star’s center to its
surface.
VI. SUMMARY AND CONCLUSIONS

Equation (4.8) is the chief result of this paper. Every algebraic and differential manip-
ulation which went into this equation was performed at least twice: once using FORMAC
on an IBM 7094 computer and once using FOrRMAC on an IBM 360.
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Equation (4.8) expresses the rotation-induced change of pulsation frequency, ¢®, as
a ratio of two integrals. The integrals can be evaluated from a knowledge of only (i)
the nonrotating equilibrium configuration (terms of order €°¢?), (ii) the radial pulsations
of the nonrotating configuration (terms of order €f), and (iii) the rotational corrections
to the structure of the equilibrium configuration (terms of order €%¢?). Thus, ¢¢® can be
calculated without ever solving any of the equations (of order €¥¢) for the coupled rota-
tion and vibration.

After this work was completed, the authors learned that S. Chandrasekhar and J.
Friedman (1971, 1972) had embarked on and completed an analogous calculation. By a
rather different route Chandrasekhar and Friedman derive an equation for ¢‘® which is
similar in structure, and presumably equivalent, to equation (4.8).
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